DS05-20834-2E

FLASH MEMORY

CMOS

4M (512K \times 8/256K \times 16) BIT

MBM29LV400T-12-x/MBM29LV400B-12-x

■ FEATURES

• Single 3.0 V read, program, and erase

Minimizes system level power requirements

Compatible with JEDEC-standard commands

Uses same software commands as E2PROMs

Compatible with JEDEC-standard world-wide pinouts

48-pin TSOP (Package suffix: PFTN - Normal Bend Type, PFTR - Reversed Bend Type)

44-pin SOP (Package suffix: PF)

46-pin SON (Package suffix: PN)

- Minimum 100,000 program/erase cycles
- High performance

120 ns maximum access time

Sector erase architecture

One 16K byte, two 8K bytes, one 32K byte, and seven 64K bytes.

Any combination of sectors can be concurrently erased. Also supports full chip erase

- Boot Code Sector Architecture
 - T = Top sector
 - B = Bottom sector
- Embedded Erase™ Algorithms

Automatically pre-programs and erases the chip or any sector

Embedded Program[™] Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready-Busy output (RY/BY)

Hardware method for detector of program or erase cycle completion

Automatic sleep mode

When addresses remain stable, automatically switch themselves to low power mode.

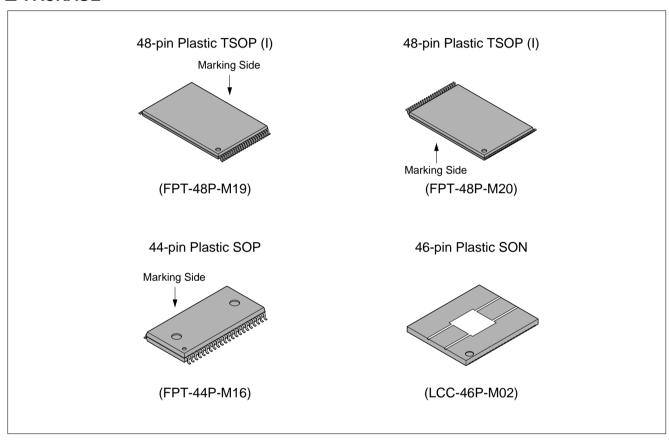
- Low Vcc write inhibit ≤ 2.5 V
- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

Sector protection

Hardware method disables any combination of sectors from program or erase operations

(Continued)


(Continued)

- Temporary sector unprotection

 Hardware method enables temporarily any combination of sectors from program or erase operations.
- Extended operating temperature range: -40°C to +85°C

Please refer to MBM29LV400T/MBM29LV400B data sheet in detailed specifications.

■ PACKAGE

■ DESCRIPTION

The MBM29LV400T-X/B-X are a 4M-bit, 3.0 V-only Flash memory organized as 512K bytes of 8 bits each or 256K words of 16 bits each. The MBM29LV400T-X/B-X are offered in 48-pin TSOP, 44-pin SOP and 46-pin SON packages. These devices are designed to be programmed in-system with the standard system 3.0 V Vcc supply. 12.0 V VPP and 5.0 V Vcc are not required for write or erase operations. The device can also be reprogrammed in standard EPROM programmers.

The standard MBM29LV400T-X/B-X offer access time 120 ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the devices have separate chip enable (\overline{CE}) , write enable (\overline{WE}) and output enable (\overline{OE}) controls.

The MBM29LV400T-X/B-X are pin and command set compatible with JEDEC standard E²PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 5.0 V and 12.0 V Flash or EPROM devices.

The MBM29LV400T-X/B-X are programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the devices automatically time the erase pulse widths and verify proper cell margin.

Any individual sector is typically erased and verified in 1.0 second. (If already completely preprogrammed.)

The devices also feature a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29LV400T-X/B-X are erased when shipped from the factory.

The devices feature single 3.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low V_{CC} detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by \overline{Data} Polling of DQ_7 , by the Toggle Bit feature on DQ_6 , or the RY/ \overline{BY} output pin. Once the end of a program or erase cycle has been completed, the device internally resets to the read mode.

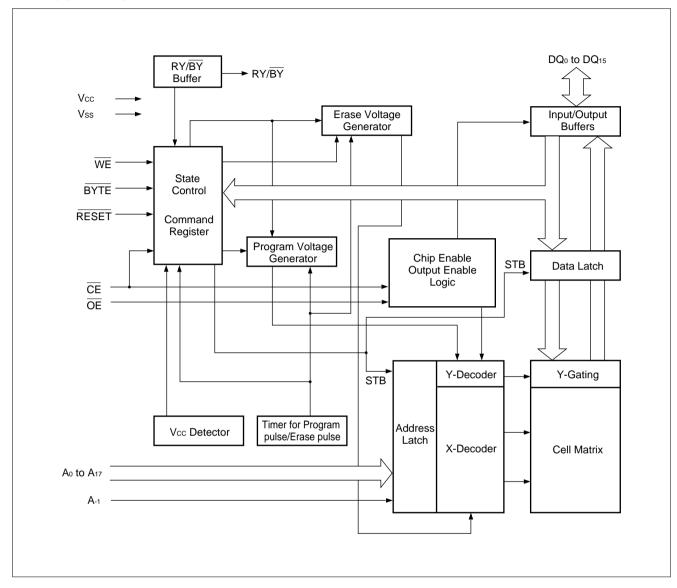
Fujitsu's Flash technology combines years of EPROM and E²PROM experience to produce the highest levels of quality, reliability and cost effectiveness. The MBM29LV400T-X/B-X memories electrically erase the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

MBM29LV400T-12-x/MBM29LV400B-12-X

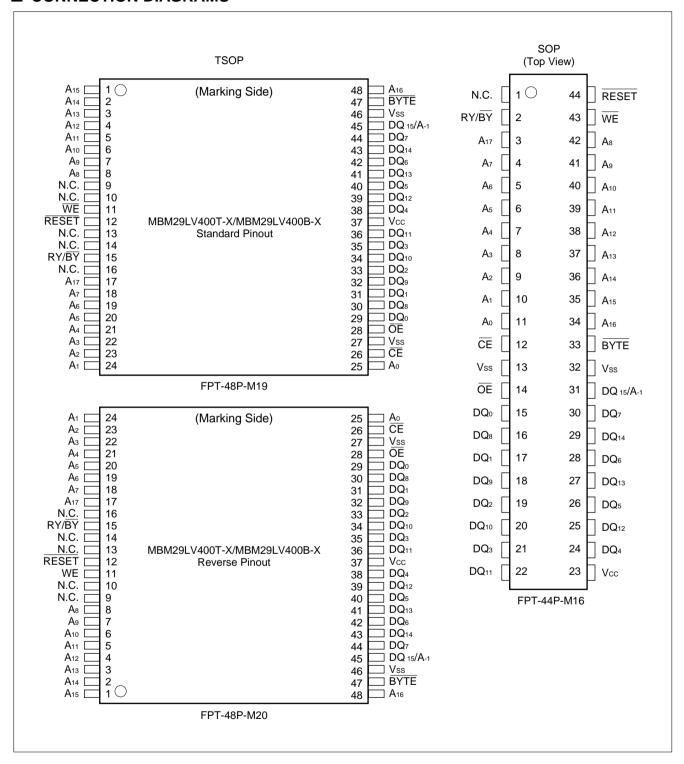
■ FLEXIBLE SECTOR-ERASE ARCHITECTURE

- One 16K byte, two 8K bytes, one 32K byte and seven 64K bytes.
- · Individual-sector, multiple-sector, or bulk-erase capability.
- Individual or multiple-sector protection is user definable.

	$\times 8$	× 16		×8	× 16
	7FFFFH	3FFFFH		7FFFFH	3FFFFH
16K byte	7BFFFH	3DFFFH	64K byte	6FFFFH	37FFFH
8K byte			64K byte		
8K byte	− 79FFFH	3CFFFH	64K byte	5FFFFH	2FFFFH
,	77FFFH	3BFFFH	,	4FFFFH	27FFFH
32K byte	│ ─ 6FFFFH	37FFFH	64K byte	3FFFFH	1FFFFH
64K byte			64K byte		
64K byte	→ 5FFFFH	2FFFFH	64K byte	2FFFFH	17FFFH
,	4FFFFH	27FFFH	,	1FFFFH	0FFFFH
64K byte	3FFFFH	1FFFFH	64K byte	0FFFFH	07FFFH
64K byte	3111111		32K byte	0111111	
64K byte	2FFFFH	17FFFH	8K byte	07FFFH	03FFFH
04K byte	1FFFFH	0FFFFH	or byte	05FFFH	02FFFH
64K byte	٥٥٥٥٥١١	075551	8K byte	0055511	0455511
64K byte	0FFFFH	07FFFH	16K byte	03FFFH	01FFFH
,	[⊥] 00000H	00000H	,	00000H	00000H

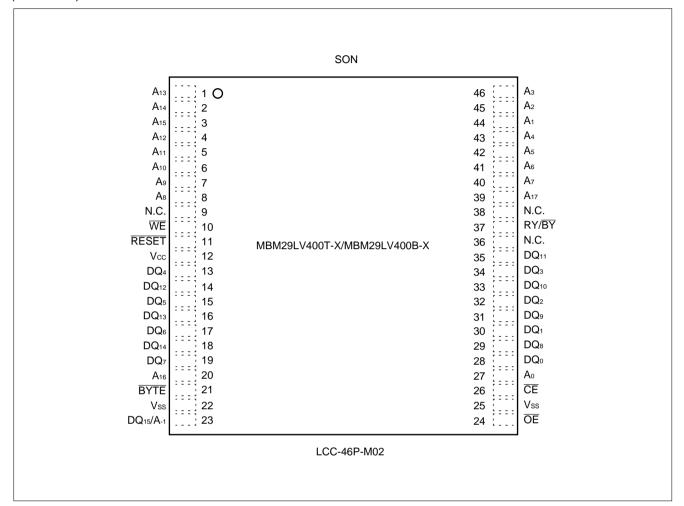

MBM29LV400T-X Sector Architecture

MBM29LV400B-X Sector Architecture


■ PRODUCT LINEUP

Part No.	MBM29LV400T-X/MBM29LV400B-X
Ordering Part No.	-12
Max. Address Access Time (ns)	120
Max. CE Access Time (ns)	120
Max. OE Access Time (ns)	50

■ BLOCK DIAGRAM

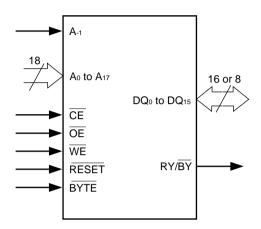


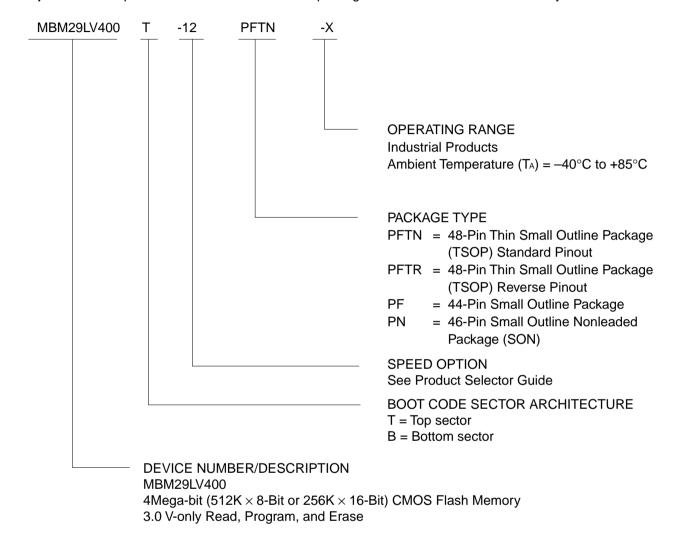
■ CONNECTION DIAGRAMS

(Continued)

(Continued)

■ LOGIC SYMBOL




Table 1 MBM29LV400T-X/400B-X Pin Configuration

Pin	Function
A-1, A0 to A17	Address Inputs
DQ0 to DQ15	Data Inputs/Outputs
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
RY/BY	Ready-Busy Outputs
RESET	Hardware Reset Pin/ Sector Protection Unlock
BYTE	Selects 8-bit or 16-bit mode
N.C.	No Internal Connection
Vss	Device Ground
Vcc	Device Power Supply $(3.0 \text{ V} ^{+0.6 \text{ V}}_{-0.3 \text{ V}})$

■ ORDERING INFORMATION

Industrial Products

Fujitsu Industrial products are available in several packages. The order number is formed by a combination of:

■ ABSOLUTE MAXIMUM RATINGS

Storage Temperature	–55°C to +125°C
Ambient Temperature with Power Applied	40°C to +85°C
Voltage with Respect to Ground All pins except A ₉ , \overline{OE} , and \overline{RESET} (Note 1)	0.5 V to Vcc+0.5 V
Vcc (Note 1)	0.5 V to +5.5 V
A ₉ , $\overline{\text{OE}}$, and $\overline{\text{RESET}}$ (Note 2)	0.5 V to +13.0 V

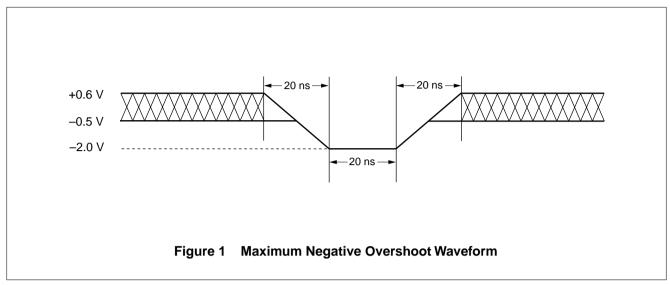
- **Notes:** 1. Minimum DC voltage on input or I/O pins are -0.5 V. During voltage transitions, inputs may negative overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins are Vcc +0.5 V. During voltage transitions, outputs may positive overshoot to Vcc +2.0 V for periods of up to 20 ns.
 - 2. Minimum DC input voltage on A₉, \overline{OE} , and \overline{RESET} pins are -0.5 V. During voltage transitions, A₉, \overline{OE} , and \overline{RESET} pins may negative overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC input voltage on A₉, \overline{OE} , and \overline{RESET} pins are +13.0 V which may overshoot to 14.0 V for periods of up to 20 ns.

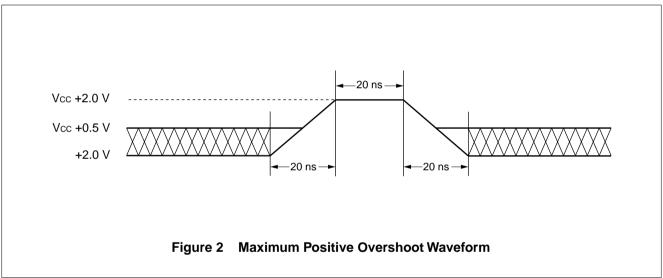
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

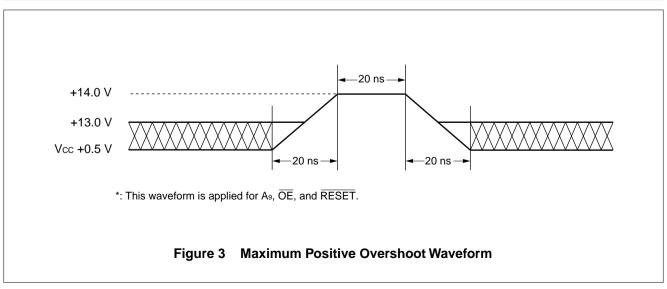
■ RECOMMENDED OPERATING RANGES

Industrial Devices
Ambient Temperature (T_A)—40°C to +85°C

Vcc Supply Voltages+2.7 V to +3.6 V


Operating ranges define those limits between which the functionality of the devices are guaranteed.


WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.


Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ MAXIMUM OVERSHOOT

■ DC CHARACTERISTICS

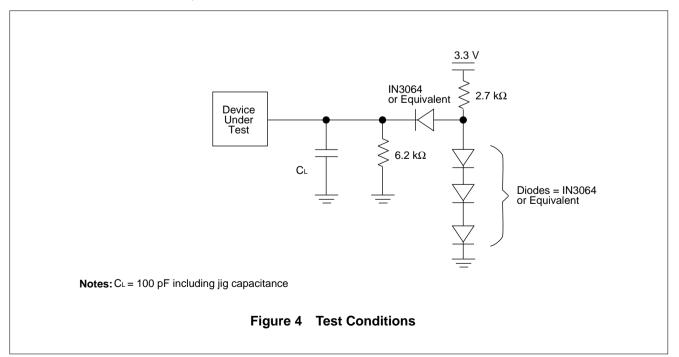
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit	
lμ	Input Leakage Current	VIN = Vss to Vcc, Vcc = Vcc	Мах.	-1.0	+1.0	μΑ
ILO	Output Leakage Current	Vout = Vss to Vcc, Vcc = Vcc	c Max.	-1.0	+1.0	μΑ
Ішт	A ₉ , OE, RESET Inputs Leakage Current	Vcc = Vcc Max., A ₉ , OE, RESET = 12.5 V		_	80	μΑ
	V Active Comment (Nets 4)	Byte			30	A
Icc1	Vcc Active Current (Note 1)	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$	Word	_	35	· mA
Icc2	Vcc Active Current (Note 2)	CE = VIL, OE = VIH		_	35	mA
Іссз	Vcc Current (Standby)	$V_{CC} = V_{CC} \text{ Max., } \overline{CE} = V_{CC} \pm 0.3 \text{ V},$ $\overline{RESET} = V_{CC} \pm 0.3 \text{ V}$		_	50	μΑ
Icc4	Vcc Current (Standby, Reset)	Vcc = Vcc Max., RESET = Vss ± 0.3 V		_	50	μΑ
VIL	Input Low Level	_		-0.5	0.6	V
ViH	Input High Level	_		2.0	Vcc + 0.3	V
VID	Voltage for Autoselect and Sector Protection (A ₉ , OE, RESET)	_		11.5	12.5	V
Vol	Output Low Voltage Level	IoL = 4.0 mA, Vcc = Vcc Min.		_	0.45	V
Vон1	Output High Voltage Laus!	lон = −2.0 mA, Vcc = Vcc Min.		2.4	_	V
V _{OH2}	Output High Voltage Level	Іон = -100 μA, Vcc = Vcc Min.		Vcc-0.4	_	V
Vlko	Low Vcc Lock-Out Voltage	_	_		2.5	V

Notes: 1. The lcc current listed includes both the DC operating current and the frequency dependent component (at 5 MHz).

The frequency component typically is 2 mA/MHz, with $\overline{\text{OE}}$ at V_{IH}.

2. Icc active while Embedded Algorithm (program or erase) is in progress.

■ AC CHARACTERISTICS


Read Only Operations Characteristics

Parameter Symbols		Description	Test Setup		-12 (Note)	Unit	
JEDEC	Standard	•	•		(Note)		
t avav	trc	Read Cycle Time	_	Min.	120	ns	
tavqv	tacc	Address to Output Delay	<u>CE</u> = V _{IL} <u>OE</u> = V _{IL}	Max.	120	ns	
t ELQV	t CE	Chip Enable to Output Delay	OE = VIL	Max.	120	ns	
t GLQV	t oe	Output Enable to Output Delay	_	Max.	50	ns	
t ehqz	t DF	Chip Enable to Output High-Z	_	Max.	30	ns	
t GHQZ	t DF	Output Enable to Output High-Z	_	Max.	30	ns	
t axqx	tон	Output Hold Time From Addresses, CE or OE, Whichever Occurs First	_	Min.	0	ns	
_	tready	RESET Pin Low to Read Mode	_	Max.	20	μs	
_	telfl telfh	CE or BYTE Switching Low or High	_	Max.	5	ns	

Notes: Test Conditions: Output Load: 1 TTL gate and 100 pF

Input rise and fall times: 5 ns Input pulse levels: 0.0 V to 3.0 V Timing measurement reference level

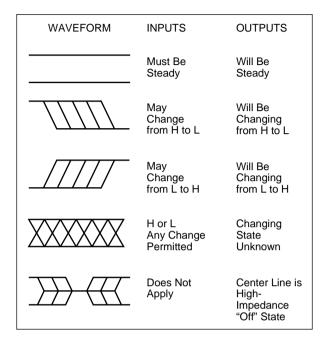
Input: 1.5 V Output: 1.5 V

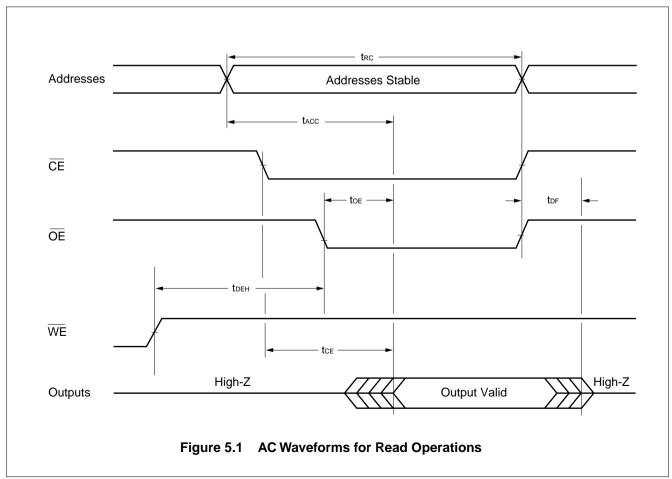
Write/Erase/Program Operations Alternate WE Controlled Writes

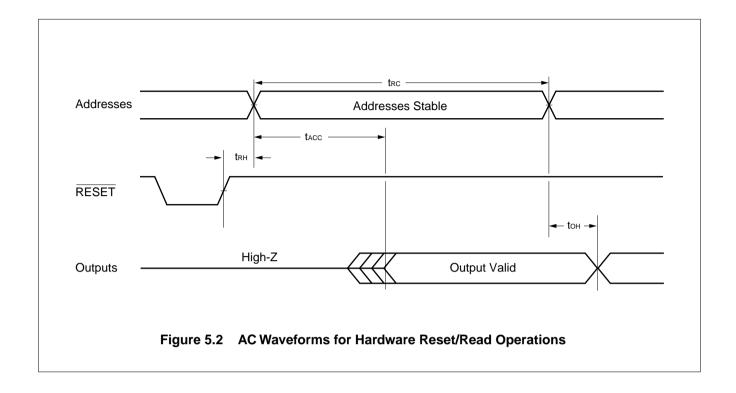
Parameter Symbols				-12	Unit		
JEDEC	Standard		Description				
tavav	twc	Write Cycle Time		Min.	120	ns	
tavwl	tas	Address Setup Tin	ne	Min.	0	ns	
twlax	tан	Address Hold Time	Э	Min.	50	ns	
t dvwh	tos	Data Setup Time		Min.	50	ns	
twhox	tон	Data Hold Time		Min.	0	ns	
_	toes	Output Enable Set	rup Time	Min.	0	ns	
	_	Output Enable	Read	Min.	0	ns	
_	t OEH	Hold Time	Toggle and Data Polling	Min.	10	ns	
t GHWL	t GHWL	Read Recover Tim	ne Before Write	Min.	0	ns	
t ELWL	tcs	CE Setup Time	CE Setup Time		0	ns	
twheh	tсн	CE Hold Time		Min.	0	ns	
t wlwh	twp	Write Pulse Width		Min.	50	ns	
twhwL	t wph	Write Pulse Width High		Min.	30	ns	
twhwh1	twhwh1	Byte Programming Operation		Тур.	8	μs	
twhwh2	t whwh2	Sector Erase Ope	ration (Note 1)	Тур.	1	sec	
_	tvcs	Vcc Setup Time		Min.	50	μs	
_	t vlht	Voltage Transition	Time (Note 2)	Min.	4	μs	
_	t wpp	Write Pulse Width	(Note 2)	Min.	100	μs	
_	toesp	OE Setup Time to	WE Active (Note 2)	Min.	4	μs	
_	t CSP	CE Setup Time to	WE Active (Note 2)	Min.	4	μs	
_	tпв	Recover Time From RY/BY		Min.	0	ns	
_	t RP	RESET Pulse Width		Min.	500	ns	
_	t RH	RESET Hold Time	RESET Hold Time Before Read		500	ns	
_	t FLQZ	BYTE Switching Lov	w to Output High-Z	Max.	40	ns	
_	t BUSY	Program/Erase Va	lid to RY/BY Delay	Min.	90	ns	

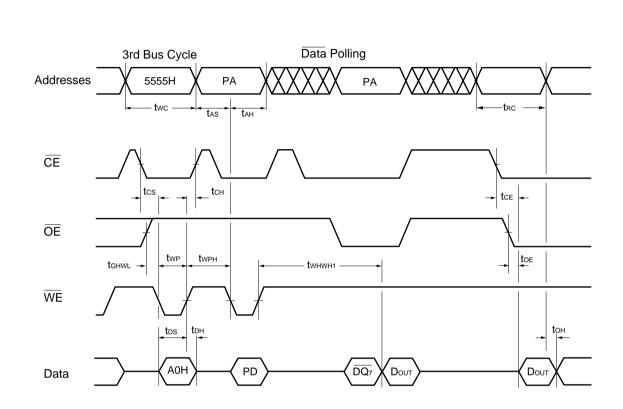
Notes: 1. This does not include the preprogramming time.

2. These timings are for Sector Protection operation.

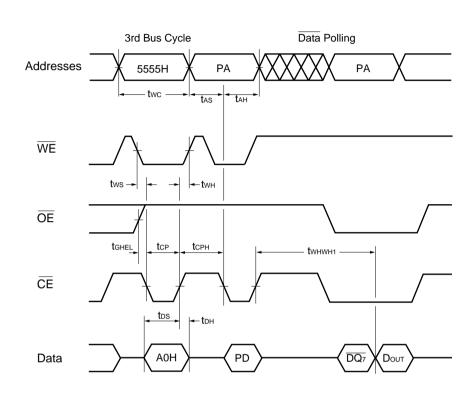

• Write/Erase/Program Operations Alternate CE Controlled Writes


Parameter Symbols			-12	Unit			
JEDEC	Standard		Description Write Cycle Time				
t avav	twc	Write Cycle Time		Min.	120	ns	
t avel	tas	Address Setup Tir	me	Min.	0	ns	
t ELAX	t AH	Address Hold Tim	е	Min.	50	ns	
t dveh	tos	Data Setup Time		Min.	50	ns	
t ehdx	tон	Data Hold Time		Min.	0	ns	
_	toes	Output Enable Se	tup Time	Min.	0	ns	
	t oeh	Output Enable	Read	Min.	0	ns	
_	LOEH	Hold Time	Toggle and Data Polling	Min.	10	ns	
t GHEL	t GHEL	Read Recover Time Before Write			0	ns	
twlel	tws	WE Setup Time		Min.	0	ns	
t ehwh	twн	WE Hold Time	WE Hold Time		0	ns	
t eleh	t cp	CE Pulse Width		Min.	50	ns	
t ehel	t CPH	CE Pulse Width H	ligh	Min.	30	ns	
t whwh1	t whwh1	Byte Programmin	g Operation	Тур.	8	μs	
t whwh2	t whwh2	Sector Erase Ope	ration (Note)	Тур.	1	sec	
_	tvcs	Vcc Setup Time		Min.	50	μs	
_	t RB	Recover Time From RY/BY		Min.	0	ns	
_	t RP	RESET Pulse Width		Min.	500	ns	
_	t RH	RESET Hold Time Before Read		Min.	500	ns	
_	t FLQZ	BYTE Switching L	ow to Output High-Z	Max.	40	ns	
_	t BUSY	Program/Erase Va	alid to RY/BY Delay	Min.	90	ns	


Note: This does not include the preprogramming time.

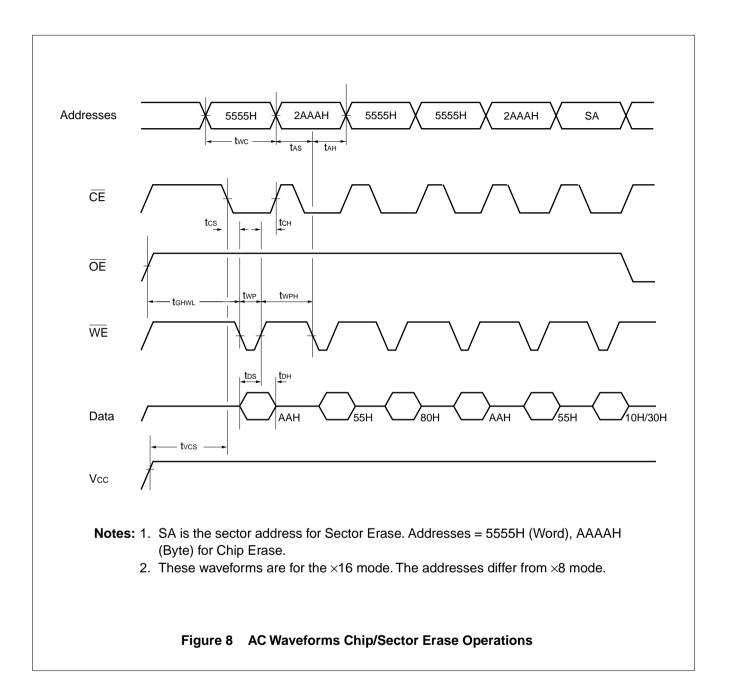

■ SWITCHING WAVEFORMS

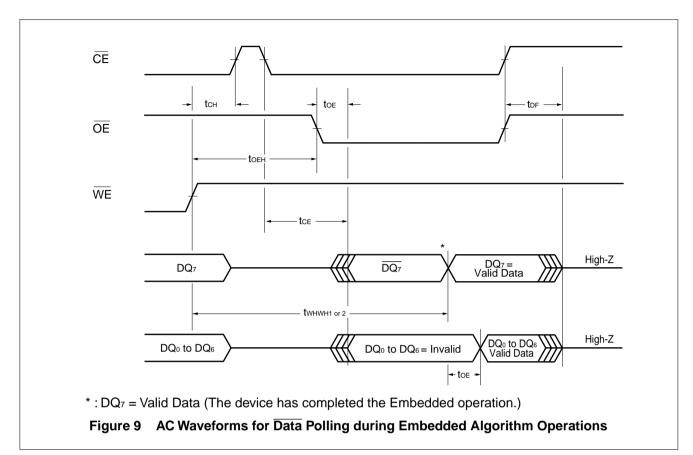
Key to Switching Waveforms

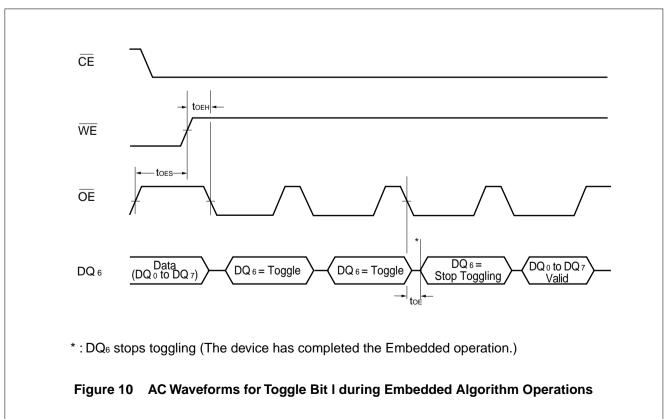


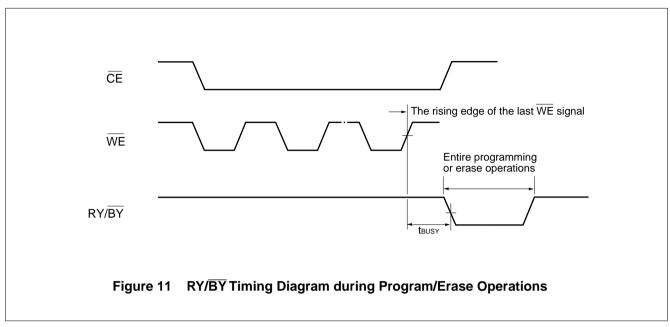
Notes: 1. PA is address of the memory location to be programmed.

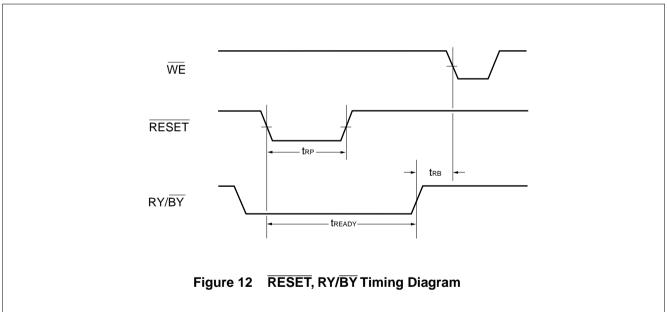
- 2. PD is data to be programmed at byte address.
- 3. $\overline{DQ_7}$ is the output of the complement of the data written to the device.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles of four bus cycle sequence.
- 6. These waveforms are for the $\times 16$ mode. The addreses differ from $\times 8$ mode.

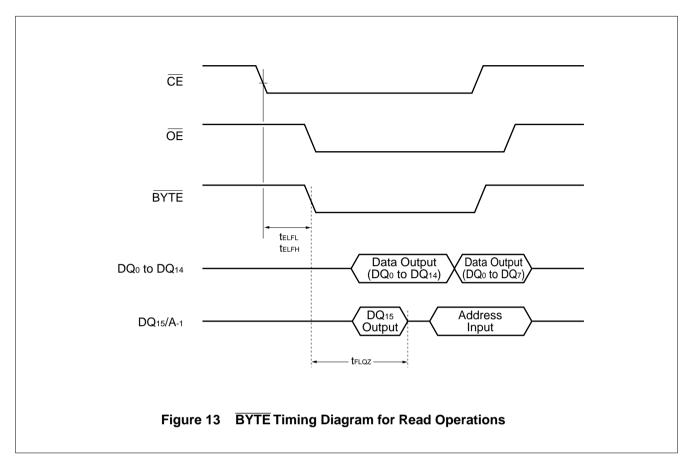

Figure 6 Alternate WE Controlled Program Operation Timings

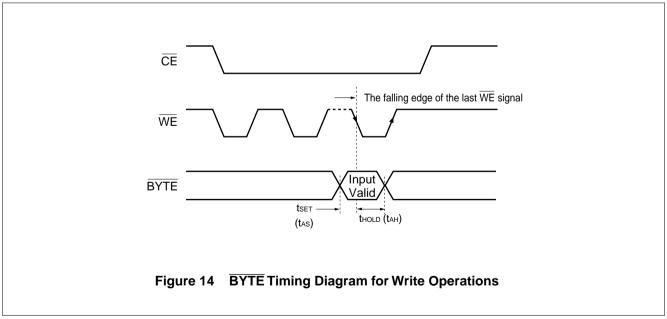


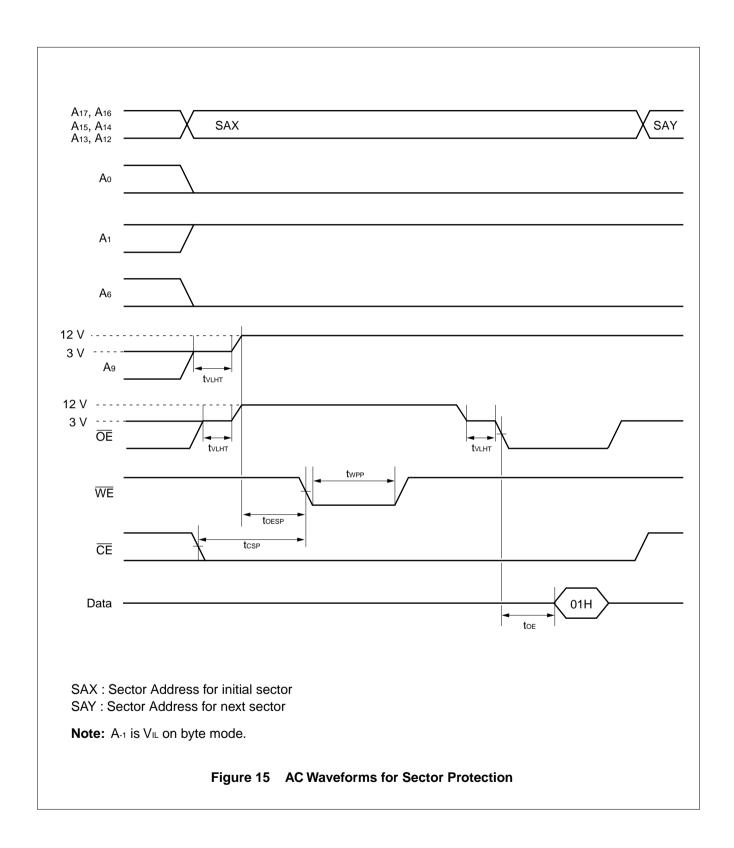

Notes: 1. PA is address of the memory location to be programmed.

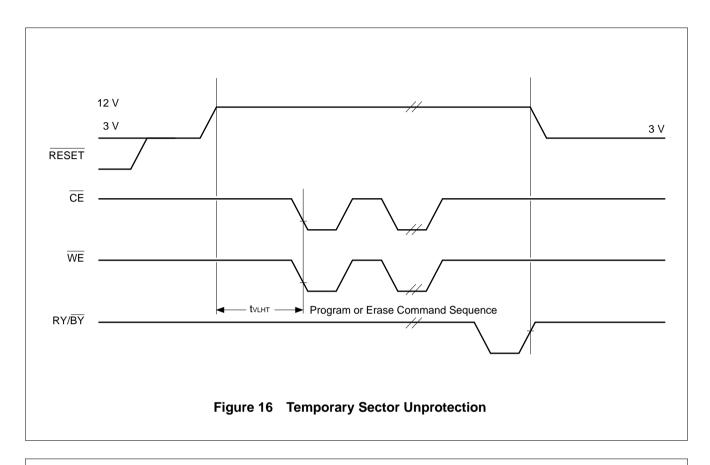

- 2. PD is data to be programmed at byte address.
- 3. \overline{DQ}_7 is the output of the complement of the data written to the device.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles of four bus cycle sequence.
- 6. These wavefororms are for the ×16 mode. The addresses differ from ×8 mode.

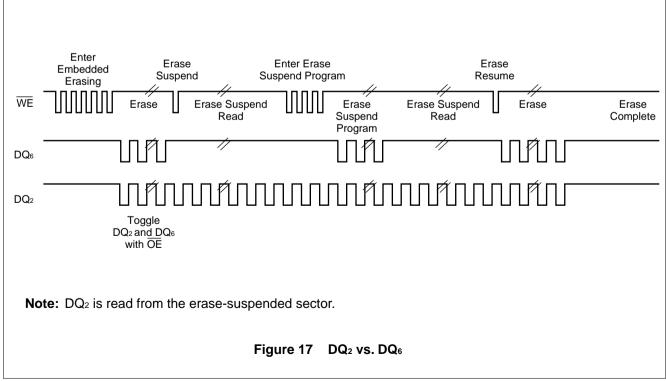

Figure 7 Alternate CE Controlled Program Operation Timings

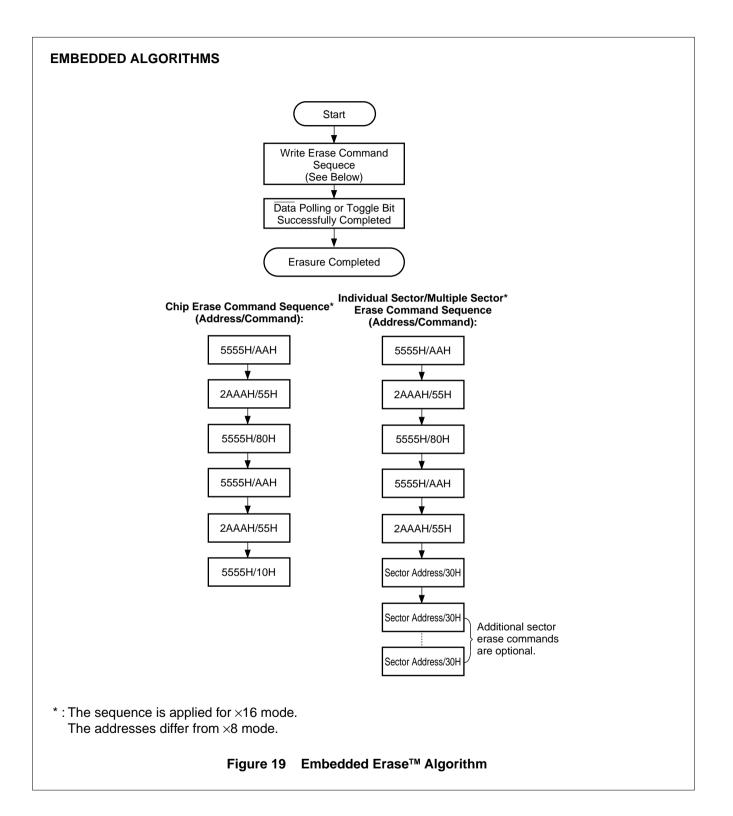


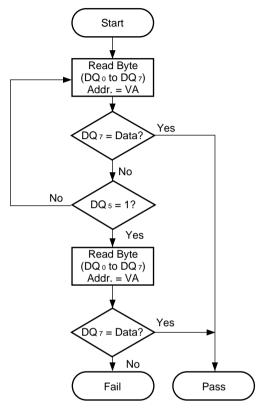






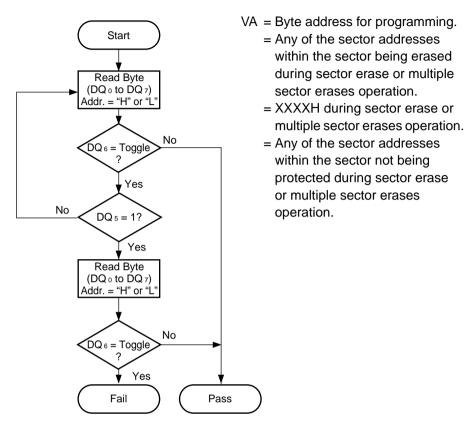






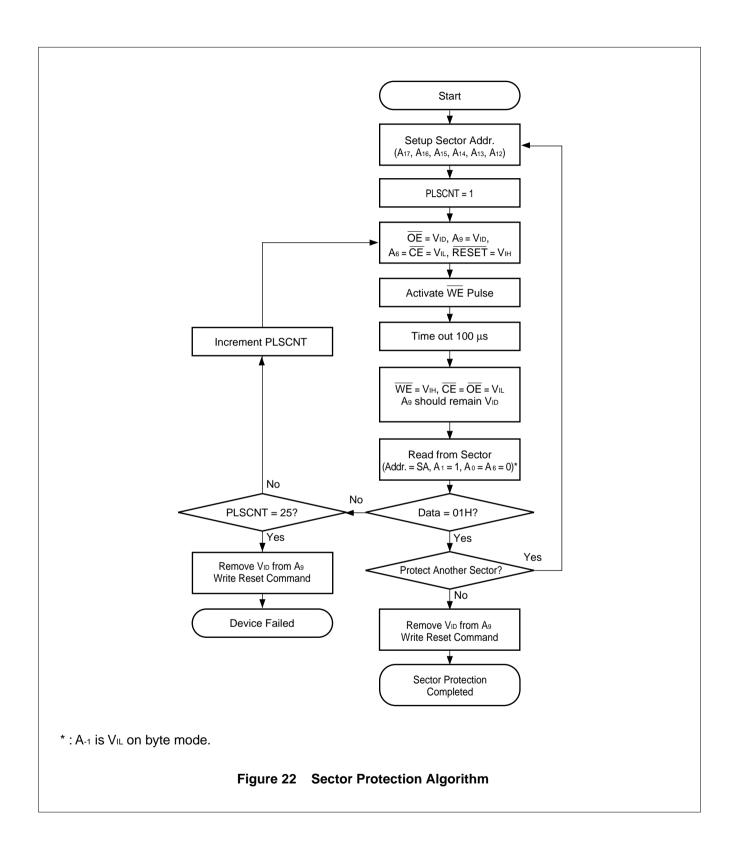
EMBEDDED ALGORITHMS Start Write Program Command Sequence (See Below) Data Polling Device No Last Address Increment Address **Programming Completed** Program Command Sequence* (Address/Command): 5555H/AAH 2AAAH/55H 5555H/A0H Program Address/Program Data *: The sequence is applied for ×16 mode. The addresses differ from ×8 mode.

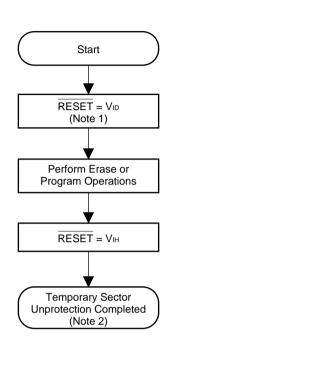
Figure 18 Embedded Programming™ Algorithm



VA = Byte address for programming.

- = Any of the sector addresses within the sector being erased during sector erase or multiple sector erases operation.
- = XXXXH during sector erase or multiple sector erases operation.
- = Any of the sector addresses within the sector not being protected during sector erase or multiple sector erases operation.


Note: DQ₇ is rechecked even if DQ₅ = "1" because DQ₇ may change simultaneously with DQ₅.


Figure 20 Data Polling Algorithm

Note: DQ₆ is rechecked even if DQ₅ = "1" because DQ₆ may stop toggling at the same time as DQ₅ changing to "1".

Figure 21 Toggle Bit Algorithm

Notes: 1. All protected sectors are unprotected.

2. All previously protected sectors are protected once again.

Figure 23 Temporary Sector Unprotection Algorithm

■ ERASE AND PROGRAMMING PERFORMANCE

Parameter		Limits		Unit	Comment
Farameter	Min.	Тур.	Max.	Unit	Comment
Sector Erase Time	_	1	15	sec	Excludes programming time prior to erasure
Word Programming Time	_	16	5,200	μs	Excludes system-level
Byte Programming Time	_	8	3,600		overhead
Chip Programming Time	_	4.2	T.B.D	sec	Excludes system-level overhead
Erase/Program Cycle	100,000	_	_	Cycles	_

■ TSOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0	7.5	9	pF
Соит	Output Capacitance	Vout = 0	8	10	pF
C _{IN2}	Control Pin Capacitance	V _{IN} = 0	9.5	12.5	pF

Note: Test conditions $T_A = 25^{\circ}C$, f = 1.0 MHz

■ SOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Тур.	Max.	Unit
Cin	Input Capacitance	V _{IN} = 0	7.5	9	pF
Соит	Output Capacitance	Vout = 0	8	10	pF
C _{IN2}	Control Pin Capacitance	V _{IN} = 0	9.5	12.5	pF

Note: Test conditions $T_A = 25^{\circ}C$, f = 1.0 MHz

■ SON PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Тур.	Max.	Unit
Cin	Input Capacitance	V _{IN} = 0	T.B.D	T.B.D	pF
Соит	Output Capacitance	Vout = 0	T.B.D	T.B.D	pF
C _{IN2}	Control Pin Capacitance	V _{IN} = 0	T.B.D	T.B.D	pF

Note: Test conditions $T_A = 25^{\circ}C$, f = 1.0 MHz

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000

Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9704

© FUJITSU LIMITED Printed in Japan